121 research outputs found

    Some introductory remarks on microbeam diffraction in nanobiosciences

    Full text link

    Correlation Between Processing Conditions, Microstructure and Mechanical Behavior in Regenerated Silkworm Silk Fibers

    Get PDF
    Regenerated silkworm fibers spun through a wet-spinning process followed by an immersion postspinning drawing step show a work to fracture comparable with that of natural silkworm silk fibers in a wide range of spinning conditions. The mechanical behavior and microstructure of these high performance fibers have been characterized, and compared with those fibers produced through conventional spinning conditions. The comparison reveals that both sets of fibers share a common semicrystalline microstructure, but significant differences are apparent in the amorphous region. Besides, high performance fibers show a ground state and the possibility of tuning their tensile behavior. These properties are characteristic of spider silk and not of natural silkworm silk, despite both regenerated and natural silkworm silk share a common composition different from that of spider silk

    Non-contact optical tweezers-based single cell analysis through in vivo X-ray elemental imaging

    Get PDF
    We report on a radically new elemental imaging approach for the analysis of biological model organisms and single cells in their natural, in vivo state. The methodology combines optical tweezers (OT) technology for non-contact, laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time. The main objective of this work is to establish a new method for in situ elemental imaging of free-standing living biological microorganisms or single cells in their aqueous environment. Using the model organism Scrippsiella trochoidea, several successful test experiments focussing on applications in environmental toxicology have been performed at ESRF-ID13, demonstrating the feasibility, repeatability and high throughput potential of the OT XRF methodology. We expect that the OT XRF methodology will significantly contribute to the new trend of investigating microorganisms at the cellular level with added in vivo capability

    Protein crystallography with a micrometre-sized synchrotron-radiation beam

    Get PDF
    For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 1010 photons s−1 µm−2 at the sample
    • …
    corecore